Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 101: 117649, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401458

RESUMO

Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-ß (Aß) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tacrina/química , Clorobenzoatos/química , Clorobenzoatos/farmacologia
2.
Pharmacol Rep ; 72(4): 1069-1075, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613543

RESUMO

BACKGROUND: 4-Anilidopiperidine class of synthetic opioid analgesics, with it's representative fentanyl, are by far the most potent and clinically significant for the treatment of the severe chronic and surgical pain. However, side effects of µ-opioids are often quite serious. In order to improve the pharmacological profile of this class of opioid analgesics, a novel fentanyl analogs were designed, synthesized and evaluated in vivo for their antinociceptive activity. METHODS: The title compounds were prepared using known synthetic transformations, including N-bromoacetamide mediated Hofmann rearrangement, highly selective carbamate cleavage with trimethylsilyl iodide and dehydration of carboxamide group to nitrile in the presence of SOCl2. The antinociceptive activity of the synthesized compounds was determined by tail-immersion and formalin test. RESULTS: The scalable synthetic route towards novel fentanyl analogs bearing nitrogen groups in position C3 of piperidine ring is designed. In addition, Hofmann rearrangement was substantially improved for the more efficient synthesis of previously published 3-substituted fentanyl analogs. The series of ten fentanyl analogs was tested in vivo for their antinociceptive activity. The most potent compound of the series was found to be cis-4, based on the determined ED50 values in tail-immersion test. CONCLUSION: Of ten compounds tested for their antinociceptive activity, compound cis-4 is characterized by high potency, rapid beginning and short duration of action and due to this might be incorporated in different pharmaceutical forms.


Assuntos
Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacologia , Medição da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Piperidinas/síntese química , Piperidinas/farmacologia , Animais , Relação Dose-Resposta a Droga , Fentanila/síntese química , Fentanila/farmacologia , Camundongos , Dor/patologia , Medição da Dor/métodos
3.
Arch Pharm (Weinheim) ; 349(8): 614-26, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335270

RESUMO

Sixteen new 1-(2-methoxyphenyl)-4-(1-phenethylpiperidin-4-yl)piperazines and 1-(2-methoxyphenyl)-4-[(1-phenethylpiperidin-4-yl)methyl]piperazines were synthesized to be used as probes for mapping the dopamine D2 receptor (D2 DAR) arylpiperazine binding site. All compounds were evaluated for their affinity toward D2 DAR in an in vitro competitive displacement assay. The most active one was 1-(2-methoxyphenyl)-4-{[1-(3-nitrophenethyl)piperidin-4-yl]methyl}piperazine (25) with an affinity of Ki = 54 nM. Docking analysis was conducted on all herein described compounds, whereas molecular dynamic simulation was performed on ligand 25 to establish its mode of interaction with D2 DAR. Two possible docking orientations are proposed; the one with a salt bridge between the piperidine moiety and Asp114 of D2 DAR is more stable.


Assuntos
Dopaminérgicos/química , Desenho de Fármacos , Piperazinas/química , Receptores de Dopamina D2/química , Animais , Sítios de Ligação , Dopamina/metabolismo , Dopaminérgicos/síntese química , Dopaminérgicos/metabolismo , Ligantes , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...